Finite Element Methods

Code	Credit Hours
CE- 808	3+0

Course Description

To introduce the application of Finite Element Methods for the analysis of continuum structure. Plane stress and plane strain problems in structures should be addressed. The student should be able to use appropriate software for the design of structures.

Textbook:

1. R. D. Cook, D. S. Malkus, and M. E. Plesha, (2002): Concepts and Applications of Finite Element Analysis, 4th Edition, John Wileyand Sons, New York.

Reference Book:

- 2. D. V. Hutton, (2004): Fundamentals of Finite Element Analysis, McGraw-Hill Inc., New York.
- 3. O. C. Zienkiewicz and R. L. Taylor, (2000): The Finite Element Method: Volume 1 The Basis, 5th Edition, ButterworthHeinemann, Oxford.
- 4. K. J. Bathe, (1995): Finite Element Procedures, 2nd Edition, Prentice-Hall Inc., Englewood Cliffs, New Jersey

Prerequisites

Nil

Assessment System for Theory

Quizzes	10-15%
Assignments	5-10%
Mid Terms	25-30%
Project	0-10%
ESE	45-50%

Teaching Plan

Week	Topics	Learning Outcomes
No		
1-2	Introduction to Approximate	Course Outline, objectives, teaching plan,
	Solution Methods for Problems	assessment
	in Elasticity	method, concepts review
3-4	The Ritz Method	Ritz Method features and applications
5-6	Internolation	1D interpolation, interpolation by discontinuous
		functions, hierarchical polynomial bases.
7-8	Weighted Regidual Methods	Collocation Method, Subdomain method,
		Galerkin method, least squares method.
9	MID TERM EXAM	
1 1()_11	Applications of the Finite Element	Mathematical foundations of the finite element
	Method	method and application to field problems
12-13		The shape function, isoparametric elements, 1D
		demonstration bar elements, 2D demonstration
		triangular elements.

14-15	Highest in Solid and Structural	Computation of the displacement field within a solid subjected to external forces
1 16 1/	Programming the Finite Element Method	Students will be introduced to several MATLAB based programs for developing and solving finite element application problems.
18	End Semester Exam	